

Earle M. Jorgensen Company

Material Safety Data Sheet

Company	Issue Date	Identification
EMJ 3050 E. Birch Brea, California 92621	November 1, 1995	STLS
Trade Name (Common Name or Synonym) Stainless Steel		or contact your nearest EMJ office
Chemical Name Examples: 304, 347, 17-4, 410	Bar, Sheet, Plate, Tub	ing, Structurals, and Forgings

I. INGREDIENTS

Material or Component	CAS Number	% Weight	Expos	ure Limits
			OSHA PEL (mg/m³)	ACGIH TLV (mg/m³)
Base Metal				
Iron (Fe)	7439-89-6	39-81	10 (Fe ₂ O ₃ Fume)	5.0 (Fe ₂ O ₃ Fume)
Alloying Elements			The same of the same	100 5 55
Carbon (C)	7440-44-0	0.5 Max	None Listed	None Listed
Manganese (Mn)	7439-96-5	10.0 Max	5.0 as Manganese	1.0 as Manganese
Phosphorous (P)	7723-14-0	0.001 - 0.2	0.1 as Phosphorous	0.1 as Phosphorous
Sulfur (S)	7704-34-9	0.001 - 0.35	13 (Sulfur Dioxide)	5 (Sulfur Dioxide)
Silicon (Si)	7440-21-3	2.0 Max	None Listed	None Listed
Chromium (Cr)	7440-47-3	10 - 27	1.0 as Chromium	0.5 as Chromium
Nickel (Ni)	7440-02-0	0 - 22	1.0 as Nickel	1.0 as Nickel
Selenium (Se)	7782-49-2	0 - 0.35	0.2 as Selenium	0.2 as Selenium
Columbium (Cb)	7440-03-1	10 0 8/ 14/4	F O so Tontolium	F O as Tantalum
Tantalum (Ta)	7440-25-7	10 x C % Wt	5.0 as Tantalum	5.0 as Tantalum
Copper (Cu)	7440-50-8	0.04 - 4	0.2 as Copper	0.2 as Copper
Molybdenum (Mo)	7439-98-7	0 - 4	5.0 Soluble Compds	5.0 Soluble Compds
Aluminum (AI)	7429-90-5	0 - 2	None Listed	5.0 as welding fumes
Titanium (Ti)	7440-32-6	0.70 Max	15 as Ti O ₂	10 as total dust

Note: The above listing is a summary of elements used to alloy stainless steel. Various grades of steel will contain different combinations of these elements. Trace elements may also be present in minute amounts.

II. PHYSICAL DATA

Material is (At Normal Conditions):					Appearance and Odor		
☐ Liquid	X	Solid		Gas	□ Other	Gray-Black With Metallic Lus	stre — Odorless
Acidity/Alkalinity				Approx			Vapor Pressure
		Melting F	Point	2700°F	Specific G	ravity ($H_2O = 1$) — Approx 8	(mm Hg at 20°C)
ph = NA		Boiling P	Point	NA °F	Solubility in	n water (% by weight) NA	NA

III. PERSONAL PROTECTIVE EQUIPMENT

Respiratory Protection NIOSH approved dust/mist/fume respirator should be used	Hands, Arms, and Body Use appropriate protective clothing such as welders aprons
during welding or burning if OSHA PEL or TLV is exceeded.	& gloves when welding or burning. Check local codes.
Eyes and Face Safety glasses should always be worn when grinding or cutting; face shields should be worn when welding or burning.	Other Clothing and Equipment As required for protection depending on the operation and safety codes.

IV. EMERGENCY MEDICAL PROCEDURES

Inhalation:	Remove to fresh air; if condition continues, consult physician.
Eye Contact:	Immediately flush well with running water to remove particulate; get medical attention.
Skin Contact:	If irritation develops, remove clothing and wash well with soap and water. If condition persists, seek medical attention.
Ingestion:	If significant amounts of metal are ingested, seek medical attention.

Front

V. HEALTH/SAFETY INFORMATION

Steel products in the natural state do not present an inhalation, ingestion, or contact health hazard. However, operations such as welding, burning, sawing, brazing, grinding, and possibly machining, which results in elevating the temperature of the product to or above its melting point or results in the generation of airborne particulates may present hazards. The above operations should be performed in well ventilated areas. The major exposure hazard is inhalation.

Effects of overexposure are as follows:

Acute: Excessive inhalation of all metallic fumes and dusts may result in irritation of eyes, nose, and throat. Also high concentrations of fumes and dusts of iron-oxide, manganese, copper, & selenium may result in metal fume fever. Typical symptoms consist of a metallic taste in the mouth, dryness and irritation of the throat, chills and fever, and usually last from 12 to 48 hours.

Chronic: Chronic and prolonged inhalation of high concentrations of fumes or dust of the following elements may lead to the conditions listed opposite the element:

Iron (iron-oxide) - Pulmonary effects, siderosis.

Manganese - Bronchitis, pneumonitis, lack of coordination, central nervous system.

Chromium - Various forms of dermatitis, inflammation and/or ulceration of upper respiratory tract, and possibly cancer of nasal passages and lungs. Based on available information, there does not appear to be any evidence that exposure to welding fume induces human cancer.

Nickel - SAME AS CHROMIUM.

Selenium - Nasal and bronchial irritation, gastro-intestinal disturbances, garlic odor of breath.

Copper - Pulmonary effects, nasal and paranasal sinus, skin and liver.

Vanadium - May affect lungs. May affect blood pressure as vanadium pentoxide.

Cobalt - Inhalation of cobalt dust may cause an asthma-like disease with cough and dyspnea.

Molybdenum - Pain in joints, hands, knees and feet.

Medical conditions generally aggravated by exposure would be dermatitis and pulmonary disease or disorders. Chromium and nickel have been identified by the International Agency for Research on See Ingredients Section I. Cancer (IARC) and the National Toxicology Program (NTP) as potential carcinogens.

		FI	RE AND	EXPLOSION		
		Auto Ignition Temperature		Flammable Limits in Air	Extinguishing Media	
Flash Point N	IA °F	NA	۰F	Lower NA % Upper NA %	* NA	
Fire and Explosion Hazard	1.60	el products in their natura	state do	not present Exting	guishing Media Not to be Used NA	

REACTIVITY

Stability Incompatibility (Materials to Avoid) Stable under normal conditions of use, storage and transport. Reacts with strong acids to form hydrogen gas. Al lemperatures above melting point, metallic oxide fumes may be liberated. X Stable Unstable Conditions to Avoid Keep Area Well Ventilated

Non-ventilated areas when cutting, welding, burning, or brazing; avoid generation of airborne dusts and fumes.

Hazardous Decomposition Products

Metallic oxides.

VI. ENVIRONMENTAL

Spill or leak procedures Special Precautions: Use good housekeeping practices to prevent accumulation of dust and to keep airborne dust to a minimum. Avoid breathing metal fumes or dust. NA Waste Disposal Method

Dust, etc. — follow federal, state, and local regulations regarding disposal.

VII. ADDITIONAL INFORMATION

Disclaimer

The information in this MSDS was obtained from sources which we believe are reliable. However, the information is provided without any representation or warranty, express or implied regarding the accuracy or correctness. The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of the product.

Earle M. Jorgensen Company

Material Safety Data Sheet

Company	Issue Date	Identification
EMJ 3050 E. Birch Brea, California 92621	November 1, 1995	AL
Trade Name (Common Name or Synonym) Aluminum Alloys	Emergency Phone Number (714) 579-8823	or contact your nearest EMJ office
Chemical Name Aluminum	Bar, Sheet, Plate, Tubi	ing, Structurals, and Forgings

I. INGREDIENTS

Material or Component	CAS Number	% Weight	Exposur	e Limits
Base Metal			1984-85 ACGIH TLV (mg/m³)	OSHA 1910.1000 PEL (mg/m³)
Aluminum (Al)	7429-90-5	90-99.7	10.0 as metal dust and oxide	Not established
Alloying Elements			5.0 as welding fume	Not established
Cobalt (Co)	7440-48-4	< 1.0 - 10.00	0.1	0.1
Copper (Cu)	7440-50-8	< 1.0 - 10.00	0.2 as fume	0.1 as fume
Iron (Fe)	1309-37-1	< 1.0 - 10.00	5.0 as fume	10.0 as fume
Lead (Pb)	7439-92-1	< 0.2 - 0.7	0.15 as dust and fume	0.05 as dust and fume
Magnesium (Mg)	1309-48-4	< 1.0 - 10.00	10.0 as fume	15.0 as fume
Manganese (Mn)	7439-96-5	< 1.0 - 10.00	1.0 as fume	5.0 ceiling
Silicon (Si)	7440-21-3	< 1.0 - 10.00	10.0 as total dust	Not established
Tin (Sn)	7440-31-5	< 1.0 - 10.00	2.0 as oxide and metal	2.0 as inorganic compounds
Zinc (Zn)	1314-13-2	< 1.0 - 10.00	5.0 as fume	5.0 as fume

Note: Aluminum alloys will be comprised of various combinations of the elements shown here. In addition, other alloying elements may be present in minute quantities.

II. PHYSICAL DATA

Material is (At Normal Cond	litions):					Appearance and Odor	
☐ Liquid	X	Solid	☐ Gas		□ Other	Metallic Appearance -	No odor
Acidity/Alkalinity		Melting P	Appoint 900-1	orox 200°F	Specific G	ravity (H ₂ O = 1) — 2.5 - 2.9	Vapor Pressure (mm Hg at 20°C)
ph = NA		Boiling Po				water (% by weight) — Nil	NA

III. PERSONAL PROTECTIVE EQUIPMENT

Appropriate respirator depending upon potential airborne contaminants and their concentrations. If exposure limits are reached or exceeded use NIOSH approved respiration equipment.	Appropriate gloves, especially for sheet and coil.
Eyee and Face Safety glasses or shield as appropriate.	Other Clothing and Equipment As needed depending on operation and safety codes.

IV. EMERGENCY MEDICAL PROCEDURES

Skin Contact: Remove particles thoroughly by washing with soap and water.

Eye Contact: Flush with water thoroughly. Get medical attention if irritation persists.

V. HEALTH/SAFETY INFORMATION

For standard operations (e.g., melting, cutting, grinding), aluminum alloys present a low health risk by inhalation and are usually considered a nuisance dust. Toxicity by ingestion - none expected. Skin and eyes - not an irritant. Welding and plasma cutting of alloys high in copper (2000 and 7000 series) may present the potential for overexposure to copper fume which can result in upper respiratory tract irritation, nausea, and metal fume fever. Nickel and chromium are other alloying elements considered hazardous as fume; however, they do not present a carcinogenic or other health concerns due to their low concentrations of the chemical form in which they are present. Overexposure to lead fumes over an extended period of time can result in such toxic effects as central nervous system disturbances, renal changes, peripheral neuropathy, gastrointestinal disturbances, anemia, and chromosomal changes.

Medical conditions generally aggravated by exposure would be dermatitis and pulmonary disease or disorders. Chromium and nickel have been identified by the International Agency for Research on See Ingredients Section I. Cancer (IARC) and the National Toxicology Program (NTP) as potential carcinogens. FIRE AND EXPLOSION Auto Ignition Temperature Flammable Limits in Air Extinguishing Media % NA Lower Flash Point NA ٥F NA Dry powder or sand Upper NA 0/0 Fire and Explosion Hazards Extinguishing Media Not to be Used Small chips, fine turnings, and dust may ignite readily. Damp aluminum Do not use water or halogen on dust fires. dust may spontaneously heat with liberation of hydrogen to form explosive air mixtures. Molten aluminum may explode on contact with water or certain metal oxides (e.g., oxides of copper, iron, and lead). REACTIVITY Stability Incompatibility (Materials to Avoid) X Stable □ Unstable Reacts with strong acids to form hydrogen gas. Conditions to Avoid Aluminum products under normal conditions are stable during use, storage, and transportation. Halogen acids and sodium hydroxide in contact with aluminum may generate explosive mixtures of hydrogen. Finely divided aluminum, such as small chips and fines, will form explosive mixtures in air. It will also form explosive mixtures in air in the presence of bromates, iodates, or ammonium nitrate. Strong oxidizers cause violent reactions with considerable heat generation. **Hazardous Decomposition Products** See Additional Information Section VII.

VI. ENVIRONMENTAL

Spill or leak procedures

NA

Waste Disposal Method

Used or unused product should be tested to determine hazard status and disposal requirements under federal, state, or local laws and regulations.

VII. ADDITIONAL INFORMATION

Other precautions:

- 1. Do not touch cast aluminum metal or heated aluminum product without knowing metal temperature. Aluminum experiences no color change during heating. Burns could result.
- 2. Aluminum powder must be packaged and shipped as a flammable solid.
- 3. Hard alloy ingots in the 2000 and 7000 Series must be stress relieved to prevent explosion when sawed.
- 4. The welding of aluminum alloys may generate carbon monoxide, carbon dioxide, ozone, nitrogen oxides, infrared radiation and ultraviolet radiation.

The information in this MSDS was obtained from sources which we believe are reliable. However, the information is provided without any representation or warranty, express or implied regarding the accuracy or correctness.

The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of the product.

Earle M. Jorgensen Company

Material Safety Data Sheet

Company	Issue Date Identification
3050 E. Birch Brea, California 92621	November 1, 1995 C Alloy & Tool
Trade Name (Common Name or Syrionym) Carbon, Alloy, and Tool Steels	Emergency Phone Number or contact your nearest (714) 579-8823 EMJ office
Chemical Name Steel	Bar, Sheet, Plate, Tubing, Structurals, and Forging

I. INGREDIENTS

Material or Component	CAS Number	% Weight	Exposure Limits			
Base Metal			OSHA PEL (mg/m³)	ACGIH TLV (mg/m ³)		
Iron (Fe)	7439-89-6	Balance	10 (Fe ₂ O ₃ Fume)	5.0 (Fe ₂ O ₃ Fume)		
Alloying Elements						
Aluminum (AI)	7429-90-5	0.10 - 1.8	None Listed	5.0 as welding fume		
Carbon (C)	7440-44-0	0.01 - 1.5	None Listed	None Listed		
Chromium (Cr)	7440-47-3	0.01 - 12	1.0 as chrome	0.5 as chrome		
Cobalt (Co)	7440-48-4	8 Max.	0.1 as cobalt and fume	0.05 as fume		
Copper (Cu)	7440-50-8	0.04 - 0.7	0.2 as copper; 1.0 as dust	0.2 as fume; 1.0 as dust		
Lead (Pb)	7439-92-1	0.15 - 0.35	0.05 as fume & dust	0.15 as dust and fume		
Manganese (Mn)	7439-96-5	0.05 - 2.0	5 as manganese	5 as dust; 1 as fume		
Molybdenum (Mo)	7439-98-7	0.01 - 1.10	15 as insoluble compds	10 as insoluble compds		
Nickel (Ni)	7440-02-0	0.01 - 10	1.0 as Nickel	1.0 as Nickel		
Phosphorous (P)	7723-14-0	0.15 Max	0.1 as Phosphorous	0.1 as Phosphorous		
Silicon (Si)	7440-21-3	0.15 - 2.20	None Listed	10 total dust		
Sulfur (S)	7704-34-9	0.001 - 0.35	13 sulfur dioxide	5 sulfur dioxide		
Tungsten (W)	7440-33-7	0 - 18	None Listed	5 insoluble compds		
Vanadium (V)	7440-62-2	0.01 - 1.0	0.5 dust; 0.1 fume	0.05 dust and fume		
Zinc (Zn) coating	1314-13-2	10 Max	5.0 as fume	5.0 as fume		

Note: The above listing is a summary of elements used in alloying steel. Various grades of steel will contain different combinations of these elements. Trace elements may also be present in minute amounts.

II. PHYSICAL DATA

Material is (At Normal Conditions):					Appearance and Odor			
☐ Liquid	X	Solid		Gas	☐ Other	Gray-Black With Metallic Lu-	stre — Odorless	
Acidity/Aixalinity Approx Melting Point 2750°F		Specific G	Vapor Pressure (mm Hg at 20°C)					
ph = NA		Boiling F		NA °F	Solubility i	NA		

III. PERSONAL PROTECTIVE EQUIPMENT

NIOSH approved dust/mist/fume respirator should be used during welding or burning if OSHA PEL or TLV is exceeded.	Hands, Arms, and Body Use appropriate protective clothing such as welders aprons & gloves when welding or burning. Check local codes.
Eyes and Face Safety glasses should always be worn when grinding or cutting; face shields should be worn when welding or burning.	Other Clothing and Equipment As required for protection depending on the operation and safety codes.

IV. EMERGENCY MEDICAL PROCEDURES

Inhalation:	Remove to fresh air; if condition continues, consult physician.
Eye Contact:	Immediately flush well with running water to remove particulate; get medical attention.
Skin Contact:	If irritation develops, remove clothing and wash well with soap and water. If condition persists, seek medical attention.
Ingestion:	If significant amounts of metal are ingested, seek medical attention.

Front

MSDS-2

V. HEALTH/SAFETY INFORMATION

HEALTH

Steel products in the natural state do not present an inhalation, ingestion, or contact health hazard. However, operations such as welding, burning, sawing, brazing, grinding, and possibly machining, which results in elevating the temperature of the product to or above its melting point or results in the generation of airborne particulates may present hazards. The above operations should be performed in well ventilated areas. The major exposure hazard is inhalation.

Effects of overexposure are as follows:

Acute: Excessive inhalation of metallic fumes and dusts may result in irritation of eyes, nose, and throat. Also high concentrations of fumes and dusts of iron-oxide, manganese, copper, zinc, & lead may result in metal fume fever. Typical symptoms consist of a metallic taste in the mouth, dryness and irritation of the throat, chills and fever, and usually last from 12 to 48 hours.

Chronic: Chronic and prolonged inhalation of high concentrations of fumes or dust of the following elements may lead to the conditions listed opposite the element:

Iron (iron-oxide) - Pulmonary effects, siderosis.

Manganese - Bronchitis, pneumonitis, lack of coordination, central nervous system.

Chromium - Various forms of dermatitis, inflammation and/or ulceration of upper respiratory tract, and possibly cancer of nasal passages and lungs. Based on available information, there does not appear to be any evidence that exposure to welding fume induces human cancer.

Nickel - SAME AS CHROMIUM.

Copper - Pulmonary effects, nasal and paranasal sinus, skin and liver.

Vanadium - May affect lungs. May affect blood pressure as vanadium pentoxide.

Cobalt - Inhalation of cobalt dust may cause an asthma-like disease with cough and dyspnea.

Molybdenum - Pain in joints, hands, knees and feet.

Tungsten - Some evidence of pulmonary involvement such as cough.

Lead - Prolonged exposures can cause behavioral changes, kidney damage, periphery neuropathy characterized by decreased hand-grip strength and adverse reproductive effects.

Zinc - None reported.

Medical conditions	generally	aggravated by	exposure	would be	dermatitis	and	pulmonary	disease	or disorders	ŝ.
--------------------	-----------	---------------	----------	----------	------------	-----	-----------	---------	--------------	----

Occupational Exposure Limits Chromium and nickel have been identified by the International Agency for Research on See Ingredients Section I. Cancer (IARC) and the National Toxicology Program (NTP) as potential carcinogens.

FIRE AND EXPLOSION

Auto Ignition Temperature Flammable Limits in Air Extinguishing Media 0/0 Lower NA oF. Flash Point NA NA NA NA Upper Extinguishing Media Not to be Used Fire and Explosion Hazards Steel products in their natural state do not present a fire or explosion hazard. REACTIVITY Stability Incompatibility (Materials to Avoid)

Stable under normal conditions of use, storage and transport. Reacts with strong Unstable X Stable acids to form hydrogen gas. At temperatures above melting point, metallic oxide fumes may be liberated. Conditions to Avoid

Keep Area Well Ventilated Non-ventilated areas when cutting, welding, burning, or brazing; avoid generation of airborne dusts and fumes.

Hazardous Decomposition Products

Metallic oxides.

VI. ENVIRONMENTAL

Spill or leak procedures Special Precautions: Use good housekeeping practices to prevent accumulation of dust and to keep airborne dust to a minimum. Avoid breathing metal fumes or dust.

Waste Disposal Method

Dust, etc. — follow federal, state, and local regulations regarding disposal.

VII. ADDITIONAL INFORMATION

Disclaimer

The information in this MSDS was obtained from sources which we believe are reliable. However, the information is provided without any representation or warranty, express or implied regarding the accuracy or correctness.

The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of the product.